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Perceptual decision‑making 
in autism as assessed by “spot 
the difference” visual cognition 
tasks
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Discriminating between similar figures proves to be a remarkably demanding task due to the limited 
capacity of our visual cognitive processes. Here we examine how perceptual inference and decision‑
making are modulated by differences arising from neurodiversity. A large sample of autistic (n = 140) 
and typical (n = 147) participants completed two forced choice similarity judgement tasks online. Each 
task consisted of “match” (identical figures) and “mismatch” (subtle differences between figures) 
conditions. Signal detection theory analyses indicated a response bias by the autism group during 
conditions of uncertainty. More specifically, autistic participants were more likely to choose the 
“mismatch” option, thus leading to more hits on the “mismatch” condition, but also more false alarms 
on the “match” condition. These results suggest differences in response strategies during perceptual 
decision‑making in autism.

What makes “spot the difference” puzzles so challenging and why are some people better at these puzzles than 
others? The deceptively simple task of identifying the differences between two similar visual scenes highlights 
the complexity of human visual  cognition1.

Actively discriminating between two similar images engages a cascade of steps from low-level processing of 
stimulus features to high-level object recognition. At the perceptual level, exposure to an object may generate 
expectations of similar, contextually-related  objects2,3. For example, consider a scenario in which a person is asked 
to visually inspect two slightly different images, image A and image B, and decide whether they match or not. The 
more subtle the differences between the two images, the more uncertain the brain may be about the “true” state 
of the environment. After the initial visual processing,3 the overall “discriminability” of features in image A may 
lead to an expectation violation in image B, thus facilitating a perceptual  decision4–6. However, what if image B is 
identical to image A? In this scenario, the lack of discernable differences may contribute to internal noise during 
perceptual inference leading to conflict or uncertainty during the decision  process7–9. While performance on such 
tasks may boil down to inter-individual differences across various factors such as motivation, working memory, 
fluid intelligence, and visual  attention10–12, it may also be modulated by differences in perceptual inference and 
decision-making as seen in autism spectrum  conditions13–16.

In this article, we use the preferred identity-first language to describe people on the autism  spectrum17. 
Autism spectrum conditions (henceforth autism) are a set of neurodevelopmental conditions characterized 
by difficulties in communication and relationships, alongside unusually narrow interests, repetitive, restricted 
patterns of behaviour, and sensory-perceptual  differences18. Visual cognition is a prominent area of interest in 
autism research. Autistic people have been described as not “seeing the wood for the trees” due to their more 
“veridical”  perception19–22. For example, autistic individuals have been found to consistently outperform typical 
participants in identifying hidden figures in complex scenes and in classic visual search  paradigms23,24. However, 
it is important to note that autistic individuals have been found to be faster, but not necessarily more accurate in 
these  tasks23,25–28. It is unclear how autistic participants make two-alternative perceptual decisions in such target 
detection tasks, particularly in trials where there is no target or “signal” present.

OPEN

1Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK. 2Department 
of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK. 3Department of Physiology 
and Pharmacology, The Western Institute for Neuroscience, London, Canada. 4Department of Psychology, 
University of Western Ontario, London, Canada. 5Department of Psychology, University of Cambridge, Cambridge, 
UK. 6These authors contributed equally: Simon Baron-Cohen and Owen Parsons. *email: nj304@cam.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19640-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15458  | https://doi.org/10.1038/s41598-022-19640-4

www.nature.com/scientificreports/

Optimal performance on a perceptual decision task requires filtering out of external noise and a reduction 
in internal  noise29–33. While external noise encompasses environmental factors, such as task-relevant or task-
irrelevant distractors, internal noise refers to variability in neuronal signals or random neuronal fluctuations 
that pose a challenge during perceptual inference and decision-making34. Neural models of autism suggest that, 
due to a possible imbalance of excitatory and inhibitory neurotransmitters, variable levels of internal noise may 
contribute to the cognitive features characteristic of the  condition35–39.

In this investigation, we aimed to expand upon previous findings of figure disembedding in autism by inves-
tigating how autistic and typical individuals make perceptual decisions about two similar or differing figures.

Methods
Participants. Participants with normal or corrected-to-normal vision were recruited online via an email 
notification sent to individuals registered to two University of Cambridge databases: (1) the Autism Research 
Centre database (accessible at www. autis mrese archc entre. com) was used to recruit autistic adults and (2) a sec-
ond database (accessible at www. cambr idgep sycho logy. com) was used to recruit the non-autistic adult controls. 
The first database collects information on formal autism diagnoses by asking participants to choose their diag-
noses from a drop-down menu. This is followed up by questions about the year of diagnosis, the professional 
who diagnosed them, and the facility where they were diagnosed. Participants were entered into a prize draw 
for the chance to win £50. After excluding participants with missing/incomplete data, the dataset contained 140 
autistic (82 females) and 147 non-autistic (118 females) adults aged 18–60 years. There were no significance 
group differences in age (t(283) = −0.55, p = 0.579) for autism (Mean = 35.1, SD = 9.85) and controls (Mean = 35.8, 
SD = 9.85).

Procedure. This study was approved by and conducted in accordance with the regulations of the Psychol-
ogy Research Ethics Committee in Cambridge (PREC. 2015.018). Written informed consent was obtained from 
all participants. Participants completed behavioural tasks probing working memory and visual perception via 
Cambridge Brain Sciences (www. cambr idgeb rains cienc es. com), a web-based platform for cognitive assessments. 
Participants were instructed to complete the tasks on a desktop computer while seated comfortably and with a 
clear view of the screen. Verbal and visuospatial working memory were assessed using the standardised Digit 
Span test, which measures the ability to recall a sequence of digits, and the Monkey Ladder test, which measures 
the ability to recall the location of  digits40,41. Stimuli were scaled to size to account for differences in browsers, 
devices, and screen size. All tasks were adapted for online computerized testing and validated in large  samples42.

For each task, participants were given 90 s to complete as many trials as possible, with a timer and the score 
displayed on one side of the screen. The stimulus presentation was pseudo-randomized such that equal num-
bers of “match” and “mismatch” trials were administered over 90 s. The difficulty level of each trial increased or 
decreased based on the participant’s performance on the previous trial. More specifically, there were two trials 
at each level of difficulty. If the participant got both trials right, the difficulty level increased by one and if they 
got both wrong, it reduced by one. The following visual scene discrimination tasks were implemented:

Task 1: Interlocking polygons. The Interlocking Polygons task is based on pen-and-paper tasks used in 
clinical neuropsychological  tests43. In this task, a pair of interlocked polygons is displayed on one side of the 
screen. Participants were instructed to indicate whether a polygon displayed on the other side of the screen is 
identical (“match”) or not identical (“mismatch”) to one of the interlocking polygons (Fig. 1A). Difficulty on each 
trial corresponded to more subtle differences in the polygons.

Figure 1.  Overview of Cambridge Brain Sciences visual perception tasks. (A) Task 1: Interlocking polygons. (B) 
Task 2: Feature match. Participants were instructed to indicate whether a scene displayed on the other side of 
the screen is identical (“match”) or not identical (“mismatch”) to the other scene. Participants were given 90 s to 
complete as many trials as possible, with a timer and the score displayed on one side of the screen.

http://www.autismresearchcentre.com
http://www.cambridgepsychology.com
http://www.cambridgebrainsciences.com
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Task 2: Feature match. The Feature Match task is a visual search task based on the feature integration 
theory of visual  attention5. Arrays of abstract shapes were displayed on either side of the screen. Participants 
were instructed to indicate whether the arrays’ contents were identical (“match”) or differed by a single shape 
(“mismatch”) (Fig. 1B). Difficulty on each trial corresponded to an increase in the number of shapes in the array.

Data analysis. Data were analysed in R version 4.0.3 (R Core Team, 2020) and RStudio (RStudio Team, 
2020) with the help of the “tidyverse”  package44. For Bayesian statistics, we used the “Bayes Factor” R package 
and report Bayes factors (BF) which quantify the strength of evidence for the alternative hypothesis  (BF10) over 
the null  (BF01)45–47. The magnitude of this strength increases with deviation from 1, with  BF10 > 3 considered as 
moderate evidence and  BF10 > 10 as strong evidence for the alternative hypothesis, while  BF10 < 3 is insufficient 
evidence for or against the alternative  hypothesis48–50. For t-tests, we report t-statistics, p-values, 95% confidence 
interval (CI) values, and effect sizes in addition to the Bayes factors. The R package “psycho” was used for the 
signal detection theory  analyses51.

To help address the heterogeneity within our online sample, we first excluded participants whose working 
memory scores were less than 2 standard deviations from the overall mean. We then conducted exploratory 
t-tests to measure the extent to which the Autism and Control groups differed in working memory abilities.

As accuracy rates do not adequately capture the participants’ decision criteria, we employed a Signal Detec-
tion Theory (SDT) approach to examine the response biases/strategies used by the  groups52,53. In this approach, 
we considered the “mismatch” trials as the signal and the “match” trials as noise.

We calculated the sensitivity/discriminability index (d′) of signal from noise using the following formula:

The response criterion (C) which measures participant bias in choosing one response was calculated using 
the following:

where hits and false alarms are expressed as the proportion of responses in each category, and Z(.) is the inverse 
of the cumulative distribution function of the given Gaussian distribution. We then assessed group differences 
in sensitivity indices (d´) and response criteria (C) by means of t-tests. Additional analyses of group differences 
in accuracy rates on each condition are reported in the Supplementary Material.

Results
Working memory. After excluding participants whose working memory performance was below the cut-off, 
276 participants remained: 129 Autism (75 female, 54 male) and 147 Control (118 female, 29 male). The explora-
tory t-test on verbal working memory as assessed by the Digit Span test showed evidence in favour of group 
differences (BF10 = 27, t(273) = 3.40, p < 0.001, d = 0.40, 95% CI [0.14, 0.56]) between the Autism (Mean = 5.44, 
SD = 0.82) and Control (Mean = 5.84, SD = 0.91) groups. Meanwhile, between-group results for the visuospatial 
working memory test yielded a BF10 smaller than 1 (BF10 = 0.69), with evidence leaning towards a lack of group 
differences (t(273) = 1.87, p = 0.06, d = 0.22, 95% CI [−0.006, 0.27]) between the Autism (Mean = 5.07, SD = 0.57) 
and Control (Mean = 5.21, SD = 0.62) groups. The distribution of working memory scores can be seen in Sup-
plementary Figs. 1 & 2.

Task 1: Interlocking polygons. The independent samples t-test on the total number of trials attempted 
by each group yielded BF10 = 1.44, suggesting no evidence in favour of group differences (t(540) = 2.36, p = 0.018, 
d = 0.20, 95% CI [0.19, 2.1]) between the Autism (Mean = 26.65, SD = 3.63) and Control (Mean = 25.51, SD = 3.60) 
groups. The mean number of trials completed by both groups in each condition are reported in Supplementary 
Table 1. The SDT analyses showed no evidence of group differences in the sensitivity index (d′) (BF10 = 0.16, 
t(232) = −0.68, p = 0.49, d = 0.08, 95% CI [−0.20, 0.09]) between Autism (Mean = 1.52, SD = 0.55) and Control 
(Mean = 1.4, SD = 0.61) (Fig. 2A). At the same time, we found moderate evidence of group differences in the deci-
sion criterion (C) (BF10 = 1.55, t(265) = 2.38, p = 0.02, d = 0.27, 95% CI [0.22, 0.30]) used by Autism (Mean = −0.14, 
SD = 0.55) and Control (Mean = 0.02, SD = 0.61) groups (Fig. 2B). This suggests a response bias by the Autism 
group in choosing the “mismatch” option when uncertain, thus leading to more false alarms on the “match” tri-
als (Fig. 2B).

Task 2: Feature match. The independent samples t-test on the total number of trials attempted by each 
group yielded BF10 < 1 (BF10 = 0.09) suggesting no evidence of group differences (t(539) = 0.22, p = 0.82, d = 0.02, 
95% CI [−0.53, 0.67]) between the Autism (Mean = 25.5, SD = 3.63) and Control (Mean = 25.4, SD = 3.60) groups 
(Supplementary Table 1). The SDT analyses showed no evidence of group differences in the sensitivity index (d′) 
(BF10 = 0.45, t(258) = 1.60, p = 0.10, d = 0.19, 95% CI [−0.02, 0.22]) between Autism (Mean = 2.69, SD = 0.50) and 
Control (Mean = 2.79, SD = 0.49) (Fig. 3A). At the same time, we found substantial evidence of group differences 
in the decision criterion (C) (BF10 = 8.01, t(258) = 2.94, p = 0.003, d = 0.36, 95% CI [0.04, 0.22]) used by Autism 
(Mean = −0.10, SD = 0.37) and Control (Mean = 0.03, SD = 0.36) groups (Fig. 3B). This suggests more false alarms 
by the autism group during “match” trials.

(1)d′ = Z(hit rate)− Z(false alarm rate)

(2)C =

−

[

Z(hit rate)+ Z
(

false alarm rate
)]

2
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Discussion
Using a large sample of autistic and typical participants, we conducted two visual cognition tasks to test figure 
discrimination ability and perceptual decision-making. In Task 1: Interlocking Polygons, participants indicated 
whether a target polygon was present in the comparison figure of interlocking polygons. In Task 2: Feature Match, 
participants indicated whether two arrays of shapes differed by a single item. Investigations using Signal Detec-
tion Theory indicated no group differences in visual perceptual sensitivity. At the same time, we found group 
differences in the decision criterion used by the groups. Specifically, autistic participants on average tended to 
choose the “mismatch” option when faced with uncertainty during “match” trials.

We found no group differences in the sensitivity index (d′), suggesting no clear differences in visual percep-
tion between the groups (Figs. 2A, 3A). This contradicts our initial hypotheses of differential visual perception 
in autism. At the same time, we found a notable response bias by the autism group while making decisions. More 
specifically, autistic participants were more likely to choose the “mismatch” option, thus leading to more hits on 

Figure 2.  Task 1: Interlocking polygons. (A) Signal detection sensitivity index for autism and control groups. 
(B) Signal detection decision criterion values for autism and control groups. Autism group is displayed in 
orange and control in purple. Dots indicate individual participant results. Error bars show the standard error of 
the mean.

Figure 3.  Task 2: Feature match. (A) Signal detection sensitivity index for autism and control groups. (B) Signal 
detection decision criterion values for autism and control groups. Autism group displayed in orange and control 
in purple. Dots indicate individual participant results. Error bars show the standard error of the mean.
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the “mismatch” condition, but also more false alarms on the “match” condition (Figs. 2B, 3B). To measure the 
extent of this response bias, additional one-sample t-tests on the response criterion (C) were computed separately 
for each group, which indicated that the autism group tended to choose “mismatch” more often than the ideal 
observer (Supplementary Material). It has been hypothesized that the perceptual features of autism may be due 
to variable levels of internal noise, thus leading to difficulties in signal-to-noise  separation39,54–59. Internal noise 
in autism has been attributed to atypical neural connectivity of sensory brain  networks35,37,60,61 and an imbalance 
in excitatory and inhibitory  neurotransmitters38,62–64. However, in this study, we found no differences between 
autistic and control groups in their discriminability indices in both tasks (Figs. 2A, 3A). While our findings 
indicate group differences in the decision criteria used by the groups (Figs. 2B, 3B), it is unclear why autistic 
individuals use a lower decision criterion while choosing between signal and noise responses. Future research 
using computational models and neuroimaging methods may shed more light on these findings.

Our study has its limitations: the less-controlled nature of the online task set-up, the sampling bias of par-
ticipants with access to computers and internet, and the unbalanced sex ratio within our study sample. A greater 
percentage of female participants reflects what is the norm with online  research65. However, due to possible sex 
differences in autism and visual cognition, we acknowledge this as an important caveat. Our findings may be 
more generalizable to females, however it is ultimately unclear whether the same effects would be observed in a 
sex-balanced or male-only sample. Future research taking these caveats into account may answer more questions 
about perceptual inference and decision-making in autism.

In conclusion, contrary to findings from previous research, when compared to typical people, autistic indi-
viduals show no differences in visual perceptual sensitivity on two variations of figure disembedding tasks. On the 
other hand, autistic individuals show a response bias when faced with uncertainty during these tasks, suggesting 
differences in perceptual decision-making. Taken together, our findings shed light on how autistic individuals 
make perceptual choices on similarity judgement tasks and provide clear directions for future research.

Data availability
The raw datasets generated and/or analysed during the current study are not publicly available as volunteers in the 
Cambridge Autism Research Database (CARD) did not consent for their data to be deposited in an Open Access 
archive. However, the CARD Management Committee considers requests by researchers for specific parts of the 
database (in anonymised form) to test specific hypotheses (please contact: research@autismresearchcentre.com).

Code availability
All the analyses scripts are publicly shared and can be accessed here: https:// github. com/ nazia jassim/ pdm_ autism.
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